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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous
collection of neurodevelopmental conditions with
onset in early childhood, characterized by impairment
in social interaction and communication, as well as
at least two among repetitive behaviors, insistence on
sameness, restricted interests, and abnormal sensory
processing (American Psychiatric Association, 2013).
ASD patients display impressive interindividual differ-
ences in clinical symptoms, developmental trajectories,
and treatment response (Persico et al., 2020). Despite
its high prevalence, no pharmacological treatment ef-
fective on core symptoms of ASD has still been found
(Persico et al., 2021).

Autism spectrum disorder is considered one of the
most “genetic” neuropsychiatric disorders: concordance
in monozygotic twins is consistently higher than that ob-
served in dizygotic twins (Huguet et al., 2016). Similarly,
family studies show elevated recurrence rates among sib-
lings and first-degree relatives of affected children, con-
firming high heritability, which has been estimated at
approximately 80% in cohorts from five different countries
(Bai et al., 2019). A specific genetic etiology is identifiable
in up to 40% of individuals, including known genetic syn-
dromes, mitochondrial disorders, chromosomal deletions
or duplications of largely variable sizes, and disruptive
mutations detected by exome and genome sequencing
(Genovese & Butler, 2020; Schaefer & Mendelsohn, 2013).
The majority of cases display complex gene x gene inter-
actions involving multiple common and rare variants, the
former endowed with variable penetrance (Bai et al., 2019;
Genovese & Butler, 2020; Schaefer & Mendelsohn, 2013).
For many patients, also gene-environment interactions
involving a genetic predisposition conferred by common
variants are plausible (Fernandez & Scherer, 2017). In
addition, genetic variants can also contribute to explain
interindividual variability in clinical phenotype, devel-
opmental trajectories, and responsiveness to behavioral
or pharmacological treatment (Cucinotta et al., 2020;
Vorstman et al.,, 2014). Collectively, genetics can thus
provide precious information above and beyond “what

Conclusions: This study confirms the satisfactory diagnostic yield of aCGH, un-
derscoring its potential for better, more in-depth care of children with autism
when genetic results are analyzed also with a focus on patient management.

15q11.2-q13.1 duplication syndrome, 16p11.2 microdeletion syndrome, array comparative
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caused the disorder”, ultimately promoting better care for
children with ASD (Butler et al., 2022).

The advent of microarray-based comparative genomic
hybridization (aCGH) technology has unveiled many
submicroscopic copy number variations (CNVs) associ-
ated with ASD (Devlin & Scherer, 2012). Research stud-
ies have shown that clinically relevant CNVs are detected
in 9.3-29.0% of patients with idiopathic ASD (Battaglia
et al.,, 2013; Nicholl et al., 2014; Pellanda et al., 2015;
Rosenfeld et al., 2010; Tammimies et al., 2015), a substan-
tially higher diagnostic yield compared to conventional
karyotyping (Shen et al., 2010). Research data from array-
CGH are important, on the one hand, to define the eti-
ology of autism, since both rare and common CNVs can
contribute to cause the disorder, and on the other hand,
to outline the functional gene networks involved in the
underlying pathophysiology (Gaugler et al., 2014; Grove
etal., 2019; Pinto et al., 2014). Therefore, the International
Standards for Cytogenomic Arrays (ISCA) Consortium
has recommended chromosomal microarray as the first-
tier clinical diagnostic test for children with ASD and var-
ious developmental disorders already since 2010 (Miller
et al., 2010). However, moving beyond the diagnostic
yield, the potential roles of genetic testing by array-CGH
in promoting better clinical management of ASD patients
have not yet been directly assessed.

The aim of the present study is twofold: on the one
hand, we wish to identify and characterize pathoge-
netically relevant CNVs in a reasonably sized cohort of
Italian ASD patients; on the other hand, we aim to explore
whether and to what extent array-CGH results can con-
tribute to improve the clinical management of autistic
patients.

2 | MATERIALS AND METHODS

21 | Sample

The sample population consisted of 329 idiopathic
ASD patients (277M, 52F; M:F ratio=5.3) belonging
to 310 families (263 simplex and 47 multiplex). Patients
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were recruited at the Service for Neurodevelopmental
Disorders at Campus Bio-Medico University Hospital
in Rome (Italy) and at the Interdepartmental Program
“Autism 0-90” of the “G. Martino” University Hospital
(Messina, Italy) between the years 2012 and 2019. All
patients fulfilled DSM-5 criteria for a clinical diagno-
sis of ASD (American Psychiatric Association, 2013).
Developmental, clinical, and family history variables
were characterized using an ad hoc questionnaire.
Patients with known genetic syndrome or a positive kar-
yotype were excluded. Also patients with major dysmor-
phisms and malformations were excluded, even in the
absence of a genetic diagnosis. Patients with sporadic
seizures (<1 every 6 months) were included, whereas
epileptic encephalopathy or severe perinatal brain dam-
age documented by MRI were causes for exclusion.
The clinical diagnosis of ASD was confirmed in all pa-
tients using both the Autism Diagnostic Observation
Schedule (ADOS, ADOS-2) (Lord et al., 2012) and the
Autism Diagnostic Interview-Revised (ADI-R) (Rutter
et al.,, 2003); cognitive level was assessed using ei-
ther the Wechsler Intelligence Scales for Children
(WISC-III, WISC-1V) (Wechsler, 2003), Griffith Mental
Developmental Scales II (Huntley, 1996), Colored
Raven Matrices (Heinz Wiedl & Carlson, 1976),
Leiter International Performance Scale R, or Leiter
International Scale—third edition (Roid & Koch, 2017),
depending on age and language development. Adaptive
behaviors were assessed using the Vineland Adaptive
Behavior Scales (Sparrow et al., 1984). All parents gave
written informed consent for themselves and for their
children. The consent form and all the methods of the
study were approved by the Institutional Review Board
of University “Campus Bio-Medico” of Rome, Italy
(prot. n. 14/98, first approval on April 28, 1998 and
subsequent amendments) and the Ethics Committee
of Messina, Italy (prot. n 22/17, approved on June 19,
2017). All methods were carried out in accordance with
relevant guidelines and regulations.

2.2 | Microarray-based CGH and
data analysis

Blood was drawn into EDTA-anticoagulated tubes from
the autistic proband, both parents and unaffected sib-
lings, whenever available. Genomic DNA was extracted
and array-CGH was performed as previously described
(Lintas et al., 2017), using the Human Genome CGH
SurePrint G3 Microarray 4 x 180 K Kit (Agilent), consist-
ing of ~170.000 60-mer oligonucleotide probes which
span the whole genome with an average spatial resolution
of ~50Kb. Following the manufacturer's instructions,

Open Access,

200ng aliquots of genomic DNA from the test and the
sex-matched reference samples were digested with Alul
and Rsal (restriction enzymes). DNA aliquots were then
labeled with fluorescent nucleotides (Cy3 and Cys5, re-
spectively) and hybridized for 24h with an equivalent
amount of Cy3- and Cy5-labeled DNA into the micro-
arrays. Slides were finally washed according to manu-
facturer's instructions and scanned immediately using
the DNA Microarray Scanner (Agilent). Quality control
was performed using the Agilent Feature Extraction
v10.7, and CNV call was performed using the ADM-2
algorithm, as implemented in the Agilent Cytogenomic
Software v.4.0.3.12 and considering aberrations with at
least three consecutive probes. All calls were visually in-
spected to remove possible false positives characterized
by irregular Log2 ratios. In order to ensure reliability,
CNVs were defined applying the following parameters:
minimum number of probes=3; if 0=2 alleles, mean
deletions log, ratio < —0.60, and mean duplication log,
ratio > +0.54. De novo CNVs and potentially relevant in-
herited CNVs with ambiguous Log2 ratio profiles were
validated by RT-PCR using TagMan assays, whenever
available, or selective PCR amplification and SybrGreen.

2.3 | CNVsinterpretation

Copy number variations (CNVs) were classified into
“rare” or “common” using an R script developed ad hoc,
based on the presence of <3 or >3 healthy subjects, re-
spectively, in the last release of the Database of Genomic
Variants (DGV) (http://dgv.tcag.ca/dgv/app/home)
(MacDonald et al., 2014). Each array-CGH data output
was first blindly classified by four authors (FC, AMP,
CL, PT) independently. CNVs were classified in accord-
ance with the American College of Medical Genetics
and Genomics (ACMG) and the Clinical Genome
Resource (ClinGen) recommendations, as follows:
1=Dbenign; 2=uncertain clinical significance; likely
benign; 3=uncertain clinical significance (no subclas-
sification); 4 =uncertain clinical significance—likely
pathogenic; 5=pathogenic (Riggs et al., 2020). Each
patient was distributed into one of these five main
categories based on the CNV with the highest causa-
tive value. Whenever ratings were discordant, inves-
tigators discussed the result and reached a consensus.
Subsequently, an additional round of analysis was run
by another independent rater (MB) using the following
software: https://cnvcalc.clinicalgenome.org/cnvcalc/
(Riggs et al., 2020), https://phoenix.bgi.com/autocnv/
(Abou Tayoun et al., 2018) and http://autopvsl.genet
ics.bgi.com/ (Xiang et al., 2020). Few discrepancies with
scores from the first round were detected and further
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discussed until final consensus was reached. Each pa-
tient was ultimately allocated into one of the five catego-
ries based on the most pathogenic CNV detected in his/
her genome. The following databases were used to col-
lect information about the genes spanned by each CNV:
the UCSC Genome Browser (http://genome.ucsc.edu),
DECIPHER (https://decipher.sanger.ac.uk/), OMIM
(https://www.omim.org), ClinGen (https://www.clini
calgenome.org/), Orphanet (https://www.orpha.net/
consor/cgi-bin/index.php), ISCA (https://isca.genetics.
emory.edu), SFARI Gene (https://sfari.org/), AutismKB
2.0 (Yang et al., 2018), GeneCards (http://www.genec
ards.org/), related literature, and PubMed (https://
www.ncbi.nlm.nih.gov). All chromosome coordinates
refer to hgl9 /GRCh37.

Following genetic testing, patients were clinically
reassessed and further medical testing based on the
outcome of array-CGH was prescribed, whenever
appropriate.

2.4 | Gene set enrichment analysis
(GSEA) and gene ontology

All genes spanning rare CNVs classified as either “patho-
genic”, “likely pathogenic”, or “uncertain clinical signifi-
cance” were selected, in addition to all genes spanning
common CNVs and listed in the SFARI Gene database
(“autism genes”). The open-access web platform Gene
Set Enrichment Analysis (GSEA) (http://software.broad
institute.org/gsea/index.jsp) was then used to perform
Enrichment Analysis with the Gene Ontology Functional
database (Subramanian et al., 2005), applying a hypergeo-
metric statistics. The FDR method was used to correct for
multiple testing, setting statistical significance at FDR <0.05,
and then exploring the dataset C5 from the Molecular
Signature Database v7.2 (https://www.gsea-msigdb.org/
gsea/msigdb/) to select the top 10 most significant catego-
ries. In addition, pathway analysis was performed with R,
using specific functions implemented in the Bioconductor
package clusterProfiler version 4.6.2 1. The specific func-
tion groupGO() was used. In this analysis, we considered
the more restrictive Gene Ontology levels 4 and 5. Other
statistical analyses were performed using the IBM Statistical
Package for Social Science (SPSS), version 19.0.

3 | RESULTS
3.1 | CNV analysis

The outcome of aCGH analysis is displayed in Figure 1,
while a complete list of CNVs with the highest causative

value for each one of the 329 autistic individuals enrolled
in this study is provided in Table S1. Pathogenic/likely
pathogenic CNVs were identified in 50/329 (15.2%) ASD
patients (n =14 and 36, respectively). Variants of uncertain
significance (VUS) were detected in 89/329 (27.1%) pa-
tients. Benign or likely benign CNVs profile was recognized
in 190/329 (57.8%) patients (n=94 and 96, respectively).
Focusing on the top three categories, the “pathogenic” or
“likely pathogenic” classes encompassed, as expected, sig-
nificantly higher frequencies of rare CNVs compared to
the VUS class (46/50 vs. 47/89, Fisher's exact p <0.00001;
Figures 2 and 3). Instead, the frequencies of deletions and
duplications in the “pathogenic”, “likely pathogenic”, and
VUS classes were comparable [y*(2df)=1.2845, p=0.53,
n.s.] (Figure 3), yielding a total of 61/139 (43.9%) deletions
and 78/139 (56.1%) duplications. Among these 139 CNVs,
24 (17.3%) were de novo and 115 (82.7%) were inherited.
“Pathogenic” variants were significantly enriched in de
novo CNVs, compared to “likely pathogenic” variants and
VUS either analyzing rare and common CNVs together
[x*(2df)=24.2203, p <1x107°], or analyzing rare deletions
and duplications separately (p<0.01 and <0.05, respec-
tively; Table 1a,b). Two patients (n. 436 and n. 218) carry
rare de novo deletions located in two regions commonly
associated with high susceptibility to neurodevelopmen-
tal disorders, namely 16p11.2 (“16p11.2 microdeletion
syndrome”, OMIM #611913) (Shinawi et al., 2010) and
17q11.2 (*17q11.2 deletion syndrome”, OMIM #613675)
(Osio et al., 2018), respectively. Inherited CNVs were only
found among “likely pathogenic” variants and VUS, with
no evidence of preferential inheritance from the maternal
or paternal side (Figures 4 and S1).

Recurrent or common CNVs with an ACMG score
equal or higher than 3 are listed in Table 2. Five individu-
als (patient n. 98, 277, 297, 338, 462) carry a rare “patho-
genic” de novo duplication located in chr 15q11.2-q13.1
(“15q11.2-q13.1 duplication syndrome”, OMIM #608636)
(Urraca et al., 2013). Among common CNVs with known
or probable functional roles, the 15q11.2 BP1-BP2 CNV
encompassing TUBGCP5, CYFIP1, NIPA2, and NIPA1 was
detected in four patients (n. 118, 177, 222, 235) (Picinelli
et al., 2016). Other common duplications and/or dele-
tions, each carried by up to 10 different ASD patients, were
found in genes identified as “strong candidates” for ASD
(score 2) on the SFARI Gene database, including CTNNA3
(Wang et al.,, 2009), MACROD2 (Anney et al., 2010),
IMMP2L (Maestrini et al.,, 2010), PARK2 (Glessner
et al., 2009), LZTS2 (Wang et al., 2009), and LRPI (De
Rubeis et al., 2014; Tables 2 and S1). These CNVs are com-
monly found in the general population and are associated
with reduced penetrance (Anney et al., 2010; De Rubeis
et al., 2014; Glessner et al., 2009; Maestrini et al., 2010;
Wang et al., 2009).
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FIGURE 1 Copy number variants
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3.2 | Gene ontology enrichment analysis

Gene ontology enrichment analysis was performed
using 436 unique genes, spanning CNVs scored as
“pathogenic”, “likely pathogenic”, or of “uncertain
clinical significance” in 134 of the 139 ASD cases car-
rying these variants (Table 3). Five cases carrying a chr.
15q11.2-q13.1 duplication were excluded from this anal-
ysis, because they alone produced a spurious, extreme
enrichment in “Nucleolus” (adj-p=1.33 e™*!) and “RNA

processing” (adj-p=3.08 e>*) gene sets, essentially due
to the SNORD gene cluster spanning these five duplica-
tions (Table S2). The top 10 most significant gene on-
tology categories identified by enrichment analysis in
the remaining 134 cases encompassed genes involved
in neuronal function and synaptic connectivity, such as
neuron projection (adj-p=9.26 e™®), synapse (adj-p=3.4
e”’), and cell-cell signaling (adj-p=4.75 e~’). Many of
the genes spanned by these CNVs are already associ-
ated with ASD and/or neurodevelopmental disorders.
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TABLE 1 Inheritance patterns among: (a) rare and common CNVs, and (b) rare deletions and duplications, defined “pathogenic”,
“likely pathogenic”, or of “uncertain significance” based on ACMG criteria (Riggs et al., 2020).

a) CNVs De novo
Uncertain significance 10/89 (11.2%)
Likely pathogenic 5/36 (13.9%)
Pathogenic 9/14 (64.3%)
x*(2df) =24.2203, p<1x10~°

b) CNVs De novo
Rare deletions

Uncertain significance 3/29 (10.3%)

3/21 (14.3%)
4/8 (50.0%)

Likely pathogenic

Pathogenic

x*(2df) =7.1119, p=0.0285

Rare duplications

2/18 (11.1%)
2/12 (16.7%)
4/5 (80.0%)

Uncertain significance
Likely pathogenic

Pathogenic

x*(2df)=10.9285, p=0.0042

Abbreviations: NA, not available.

. Mat |
Inherited CNVs e
I:' Paternal
100% )
90%
80% 30 16
42.3% 55.2%
70% ( 8) ( 8)
60%
50%
40%
30%
20%
13
10% 8%y
0 o0
0
Uncertain Significance Likely Pathogenic Pathogenic

FIGURE 4 Maternal and paternal inheritance among rare
and common “pathogenic”, “likely pathogenic”, or “uncertain
significance” copy number variants (CNVs).

In addition, we conducted a complementary analysis
of gene ontology with ClusterProfiler using more re-
strictive levels for each class. The results of the first 30
classes obtained using level 4 and 5 essentially confirm
our initial results, also underscoring the importance of
calcium-binding intracellular proteins, as well as pro-
teins involved in DNA/RNA binding and transcriptional
regulation (Tables S3-S8).

Inherited NA

71/89 (79.8%)
29/36 (80.5%)

8/89 (9.0%)
2/36 (5.6%)

0/14 5/14 (35.7%)
Inherited NA

24/29 (82.8%) 2/29 (6.9%)
16/21 (76.2%) 2/21(9.5%)
0/8 4/8 (50.0%)
13/18 (72.2%) 3/18 (16.7%)
10/12 (83.3%) 0/12

0/5 1/5 (20.0%)

3.3 | Array-CGH and
clinical management

Following array-CGH analysis, the 50 patients carrying
“pathogenic” or “likely pathogenic” CNVs were reas-
sessed; in 13/50 patients (26.0%), the outcome of the array-
CGH led to prescribe additional medical exams. In some
patients, more than one exam was prescribed, yielding a
total of 25 prescriptions of medical procedures, exams,
or visits (Table 4). The most prescribed exams were EEG
(8/25, 32.0%), blood chemistry tests (5/25, 20.0%), brain
MRI (4/25, 16.0%), EKG (2/25, 8.0%), and cardiac ultra-
sound (2/25, 8.0%). Positive outcomes were obtained in
12/25 (48.0%) of these medical exams, requested primarily
on the basis of array-CGH results (Table 4).

4 | DISCUSSION

This paper reports the results of array-CGH analysis con-
ducted on a sample of 329 Italian children with ASD.
To ensure the reliability of our CNV scoring method,
we adopted a two-step approach, first classifying blindly
CNVs in accordance with the ACMG and the ClinGen rec-
ommendations (Riggs et al., 2020), and then reanalyzing
these results using publicly available software. Using this
approach, we reached a total detection rate of 15.2% “path-
ogenic” and “likely pathogenic” variants, which is fully
comparable with previously reported diagnostic yields
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TABLE 3 (Continued)

FDR

#k/K
(%)

# genes in

# genes in

g-value

p-value

gene set (K)

overlap (k)

Genes

Gene set name
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6.17e710 8.03e”’

6.20

306

CYFIP1, NF1, CPEB3, HRH1, HTT, PJA2, CAMK4, NPS, NRXN3, DGCR2,

CSMD1
NLGNI, CHRNA7, FARP1, ROBO2, CNTNAP2, TNIK, NRXN1, PRKN,

CHRNA7, GRIN2A, SLC6A1, CNTNAP2, FZD9, NRXN1, ABCA7, PRKN,

GOBP_COGNITION

1.7¢7° 1.91e7°

4.10

658

27

MORPHOGENESIS

GOBP_CELL_PART

CYFIP1, CDK5R1, KIF1A, SMURF1, LIMK1, TAOK2, CRMP1, ZDHHC15,
RHOG, CDH4, NTN1, RREBI1, PLA2G10, NOTCH2, BCL2, MTM1, NRXN3,

SLC25A46, LAMAI
NLGNI, CHRNA7, FARP1, ROBO2, CNTNAP2, TNIK, NRXN1, CLDN3, MYH10,

1.84¢7° 1.91e7°

1004 3.40

34

MORPHOGENESIS

GOBP_CELL

CLDN4, ARL13B, PRKN, CYFIP1, CDK5R1, COROI1A, KIF1A, SMURFI,

LIMK1, TAOK2, CRMP1, STRC, ZDHHC15, RHOG, ALDOA, CDH4, NTN1,
RREBI1, DOCK1, PLA2G10, NOTCH2, BCL2, NRXN3, SLC25A46, LAMA1

Note: The analysis was performed using the MSigDB database v7.5.1, updated January 2022. Gene set names refer to gene ontology cellular components (GOCC) and biological processes (GOBP).

ranging between 9.3% and 29% (Battaglia et al., 2013;
Nicholl et al., 2014; Pellanda et al., 2015; Rosenfeld
et al., 2010; Tammimies et al., 2015). Predictably, rare and
de novo CNVs are associated with greater pathogenicity,
as compared to common and inherited variants, while
neither deletions nor duplications are significantly pre-
dominant. This may partly stem from the methodological
approach, whereby CNVs inherited from an apparently
unaffected parent or overlapping with common popula-
tion variation receive a lower score, according to ACMG
recommendation (Riggs et al., 2020). However, we tried
as much as possible to determine ACMG scores based
on the intrinsic features of the CNV, rather than relying
largely on the “de novo” vs. “inherited” criterion, because
neurodevelopmental disorders are enriched with inher-
ited pathogenic variants with reduced penetrance and
no clear parental expression, as well as with pathogenic
epimutations in the proband. At the same time, it is bio-
logically plausible that these variants may be endowed
with lower penetrance, while rare and de novo variants,
especially those affecting neuronal genes, in different
samples typically explain the presence of ASD in ~5-10%
of cases (Autism Genome Project Consortium et al., 2007;
Marshall et al., 2008; Pinto et al., 2010). Unfortunately,
follow-up information regarding additional genetic test-
ing performed using NGS is not available, so we do not
know how many cases were explained by variants uncov-
ered performing whole exome sequencing.

Among rare variants found in this study, several repre-
sent recurrent CNVs in the autism literature or variants of
clinical interest. The 15q11.2-q13.1 duplication syndrome
involves several genes implicated in autism, playing key
roles in neurodevelopment and specifically expressed in
the central nervous system, for example, ATP10A (OMIM
#605855), UBE3A (OMIM #601623), and the GABRB3
(OMIM #137192), GABRG3 (OMIM #600233), and
GABRAS5 genes (Urraca et al., 2013). Other genes perform
basic cellular functions known to be involved in ASD,
such as RNA processing (SNRPN) and protein degradation
(UBE3A, HERC?2). Clinically, our five patients with the
15q11.2-q13.1 duplication syndrome all show severe defi-
cits in social communication, mild intellectual disability,
and sex ratio M:F=4:1, in line with clinical descriptions
of this syndrome (OMIM #608636) (Urraca et al., 2013).
The 16p11.2 microdeletion syndrome (OMIM #611913)
(Shinawi et al., 2010) and the 17q11.2 deletion syndrome
(OMIM # 613675) (Osio et al., 2018), both confer high
susceptibility to ASD, developmental delay, and minor
craniofacial dysmorphisms (Osio et al., 2018; Shinawi
et al., 2010), all features present in our two patients.
Finally, patient n. 376 is a 5-year-old boy with severe ASD,
verbal language impairment and developmental delay,
who inherited from an apparently unaffected parent a
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65kb deletion in chr. 13q32.2, involving the FARPI gene.
We have recently described this case in detail (Cucinotta
et al., 2020), because he did not respond to the same early
intensive behavioral intervention which was successful
in bringing out of the autism spectrum his older brother,
who does not carry this deletion. Although this CNV does
not overlap nor appear similar to CNVs identified in other
autistic patients, this genetic variation was classified as
“likely pathogenic” because FARPI hemizygosity may
represent a plausible candidate to influence neuroplas-
tic responses to therapeutic environmental stimulation.
Farpl is a synaptic scaffolding protein which regulates
synapse function and morphology and promotes actin as-
sembly, dendritic growth, and synaptogenesis (Cheadle &
Biederer, 2014).

Common variants collectively have been shown to pro-
vide large contributions to ASD susceptibility, with each
variant exerting a small effect (Devlin & Scherer, 2012;
Gaugler et al., 2014; Huguet et al., 2016). However, some
common variants provide more sizable contributions, al-
though their penetrance remains relatively low and clin-
ical expression is variable. The 15q11.2 BP1-BP2 CNV
encompassing TUBGCP5, CYFIP1, NIPA2, and NIPAI,
presented in a previous report (Picinelli et al., 2016),
is a paradigmatic example. In another patient (n.10)
were detected as many as 11 CNVs that were not pres-
ent in parental genomes, suggesting a strong tendency
to genomic instability. Many of these CNVs encompass
genes included in the best-known lists of candidate
genes for autism, including CTNNA3 (OMIM #607667)
(Wang et al., 2009), MACROD2 (OMIM #611567) (Anney
et al., 2010), IMMP2L (OMIM #605977) (Maestrini
et al., 2010), PARK2 (OMIM #600116) (Glessner
et al., 2009), LZTS2 (OMIM #610454) (Wang et al., 2009),
and LRP1 (OMIM #107770) (De Rubeis et al., 2014). In
addition, TBX1 (OMIM #602054) (Paylor et al., 2006),
which is located in the center of the region associated
with DiGeorge syndrome (OMIM #188400), is partially
deleted (six deleted exons out of a total of nine exons) in
patient n. 10. The Decipher database lists 16 variations
containing the TBXI1 gene and associated with autistic
disorder; for SFARI Gene database, TBXI is a known
“syndromic” gene; moreover, there is also a linkage
study (International Molecular Genetic Study of Autism
Consortium, 1998) that associates the chr. 22q11.21 re-
gion with autism.

Gene Ontology enrichment analysis is aimed at iden-
tifying and ranking functionally related groups of genes
obtained from high-throughput experiments. In our study,
this analysis fully confirms the importance of neuronal
genes, especially structural and functional genes involved
in neuronal connectivity (Table 3). This outcome fits well
with electrophysiological and functional imaging evidence

supporting autism as a mainly “developmental disconnec-
tion syndrome” characterized by reduced connectivity
among distant brain regions, paired with increased local
connectivity (Geschwind & Levitt, 2007). In addition to
neuronal gene sets, also “transcriptional regulation”, chro-
matin structure”, and “immune” genes have been reported
in several other genomic and transcriptomic studies (De
Rubeis et al., 2014; He et al., 2019; Satterstrom et al., 2020;
Voineagu et al., 2011). In our sample, the “nucleolus” and
“RNA processing” gene sets yielded the most impressive p-
values, when we analyzed all 139 subjects carrying CNVs
with scores 3-5 (i.e., VUS, likely pathogenic, certainly
pathogenic; Table S2). If we exclude the five cases carrying
the chr. 15q11.2-q13.1 duplication, these two gene sets dis-
appear from the top 10 list (Table 3). We believe this dis-
crepancy documents that in our sample, the association
with transcriptional regulation gene sets was being spu-
riously boosted by chr 15q duplications, in particular due
to the entire SNORD gene cluster being consistently du-
plicated in all five cases (Table S1). However, using more
stringent levels of analysis, we find a very complex and
mixed set of GO categories, which primarily encompass
genes encoding calcium-binding proteins, as well as DNA-
or RNA-binding proteins and transcriptional regulators
(Tables S3-S8). This more stringent analysis confirms that
transcriptional regulation and chromatin management
are involved in ASD genetics, as documented by GSEAs
performed in large exome-sequencing studies (De Rubeis
et al., 2014; Satterstrom et al., 2020). Finally, we do not
find “immune” genes spanned by putatively pathogenic
CNVs, but indeed there is ample evidence of overexpres-
sion of immune genes, especially in ASD brains, accord-
ing to the vast majority of genome-wide transcriptomic
studies (He et al., 2019; Voineagu et al., 2011). Evidently,
this overexpression likely represents one of the conver-
gent functional consequences shared by many different
autism-causing gene variants not directly related to im-
mune function per se, although an additional modula-
tion by common genetic and epigenetic variants located
in transcriptional regulatory regions of immune genes is
quite plausible.

Another aim of the present work was to verify whether
and to what extent genetic testing by CGH-array can con-
tribute to improve the clinical management of autistic pa-
tients. Among the 50 patients carrying pathogenic/likely
pathogenic CNVs, 13 (26%) underwent additional medi-
cal exams spurred by array-CGH results (Table 4). These
ranged from relatively common exams in the neurodevel-
opmental disorders clinic, like EEG and EKG, to more spe-
cific tests, like cardiac or neck ultrasound. These exams
were prescribed only because of a-CGH results. A posi-
tive outcome was obtained in almost half of these diag-
nostic tests and the more specialized exams almost always
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yielded positive results. This further step in diagnostic
sensitivity arising from array CGH analysis, which goes
beyond the mere identification of a plausible etiology and
provides information able to improve the clinical man-
agement of ASD patients, represents an excellent exam-
ple of “actionable genomics in clinical practice” (Butler
etal., 2022). At this moment, CNV-based or etiology-based
treatment for ASD is still scarce and this is a major lim-
itation of our current medical management of ASD. This
upgrade requires at least two components, a genetic anal-
ysis of the results performed also with this clinical aim
in mind and a strict collaboration between the clinical/
molecular geneticist and the child psychiatrist, who are
primarily responsible for the genetic testing and for the
clinical management of ASD patients, respectively. In the
near future, the complexity of merging genetic and mo-
lecular information with structural neurodevelopment,
neuropsychological and executive functions, cognitive
level, emotional reactivity, social adaptation, and the ex-
istential trajectory of an autistic person will represent
an increasingly exciting challenge. This perspective may
likely require novel teaching and training strategies able
to reduce the gap between molecules, neural circuits, and
the human mind in order to provide more effective and
targeted support to individuals with ASD.
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