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RNA sequencing of blood from sex‑ 
and age‑matched discordant 
siblings supports immune 
and transcriptional dysregulation 
in autism spectrum disorder
Pasquale Tomaiuolo 1, Ignazio Stefano Piras 2, Simona Baghai Sain 3, Chiara Picinelli 1, 
Marco Baccarin 1,4, Paola Castronovo 1, Marco J. Morelli 3, Dejan Lazarevic 3, 
Maria Luisa Scattoni 5, Giovanni Tonon 3 & Antonio M. Persico 6*

Autism spectrum disorder (ASD) is a neurodevelopmental condition with onset in early childhood, 
still diagnosed only through clinical observation due to the lack of laboratory biomarkers. Early 
detection strategies would be especially useful in screening high‑risk newborn siblings of children 
already diagnosed with ASD. We performed RNA sequencing on peripheral blood, comparing 27 
pairs of ASD children vs their sex‑ and age‑matched unaffected siblings. Differential gene expression 
profiling, performed applying an unpaired model found two immune genes, EGR1 and IGKV3D-15, 
significantly upregulated in ASD patients (both p adj = 0.037). Weighted gene correlation network 
analysis identified 18 co‑expressed modules. One of these modules was downregulated among autistic 
individuals (p = 0.035) and a ROC curve using its eigengene values yielded an AUC of 0.62. Genes in 
this module are primarily involved in transcriptional control and its hub gene, RACK1, encodes for a 
signaling protein critical for neurodevelopment and innate immunity, whose expression is influenced 
by various hormones and known "endocrine disruptors". These results indicate that transcriptomic 
biomarkers can contribute to the sensitivity of an intra‑familial multimarker panel for ASD and provide 
further evidence that neurodevelopment, innate immunity and transcriptional regulation are key to 
ASD pathogenesis.

Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder with onset in early childhood, 
characterized by social and communication deficits, stereotyped behaviors, restricted interests, and abnormal 
sensory  processing1. ASD affects about 1% of the population, ranging from 1/54 children and 1/45 adults in the 
United  States2,3, to 1/87 children in Italy and 1/102 adults in  England4,5. ASD is considered one of the behav-
ioral disorders with the highest genetic  component6,7. Heritability, or the amount of variability of a certain 
character attributable to genetic factors, varies from 50 to 95% in  ASD8. Furthermore, estimates of disease risk 
among siblings of ASD patients range from 3 to 18%, values well above the prevalence observed in the general 
 population9,10. Submicroscopic cytogenetic abnormalities called copy number variations (CNVs) can contribute 
to autism in approximately 5–10% of the  cases7,11. Despite the lack of a clear or universal genetic mechanism, 
several studies have revealed specific genetic factors for isolated cases as well as a number of candidate genes and 
chromosomal regions indicated as relevant across multiple studies, such as 1q21.1, 2q13, 2p16, 3q29, 7q11.23, 
15q11.2-q13.1, 16p11.2, 22q13.312,13.

Transcriptomic studies are a key link between protein levels and genetic factors. RNA expression studies are 
a useful tool to characterize complex human diseases and predict associated molecular and cellular  processes14. 
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Early transcriptome studies in ASD were conducted using post-mortem brain tissue from ASD  patients15–18. RNA 
obtained from peripheral blood mononuclear cells (PBMCs) subsequently became of interest in autism research, 
because blood collection is characterized by low invasiveness, ease of use, and cost-effectiveness. ASD is still 
diagnosed exclusively based on clinical observation and investigators are actively seeking laboratory biomarkers 
able to aid clinicians in early diagnoses, prognostic predictions, and targeted choice of therapeutic  strategies19. 
Blood-based biomarkers could be used for large-scale screening and to support diagnosis in clinical  settings19. 
Several studies were thus performed on blood allowing the identification of genes and pathways dysregulated in 
autistic individuals. Initially, Hu et al.20 analyzed RNA extracted from lymphoblastoid cell lines (LCLs) obtained 
from 3 pairs of monozygotic twins discordant for ASD. They identified 25 up-regulated and 19 downregulated 
genes including 8 genes associated with neurological functions, development, or diseases. The same group con-
ducted a second  study21 performing microarray analysis on 116 LCLs from ASD patients stratified into three 
phenotypic categories and compared to age-matched controls. They identified 530 genes differentially expressed 
between ASD patients and controls. These genes were enriched for synaptic transmission, neurogenesis, neurula-
tion, long-term potentiation, protein ubiquitination, and brain function. Additionally, only in the most severely 
affected ASD subgroup, 15 differentially expressed genes were associated with the regulation of the circadian 
 rhythm21. Other studies provided evidence of the involvement of the immune system in a large subset of patients 
with ASD. In one of the first transcriptomics studies conducted on blood, Gregg et al.22 selected patients with a 
history of developmental regression or history of early-onset and controls from the general population. No genes 
were significantly dysregulated between ASD and controls. However, 11 genes expressed in natural killer cells 
(NK) and enriched for the NK cytotoxicity pathway were shared among all ASD patients compared to controls. 
Enstrom et al.23 then analyzed peripheral blood from 35 children with ASD and 11 age- and gender-matched 
controls confirming an enrichment of the expression of genes correlated with NK cells function. This suggests 
that abnormalities in NK cells may represent a susceptibility factor for ASD, predisposing to the development of 
autoimmunity or to adverse neuroimmune interactions during a critical period of neurodevelopment. Interest-
ingly, a possible decreased NK cell function in ASD was already reported in 1987 by Warren et al.24 Meanwhile, 
weighted gene correlation network analysis (WGCNA)  analysis25 has become a widely used approach both in 
brain- and blood-based studies of ASD, allowing the identification of modules encompassing functionally-related, 
co-expressed  genes17,26–28. Using this method, relevant roles for NK and naïve B cells were recently confirmed 
by Filosi et al.26, comparing 75 discordant sibling pairs. Modest, yet significant transcriptomic differences were 
detected mainly reflecting changes in peripheral blood immune genes, supporting possible roles for NMUR1, 
HMGB3, and PTPRN2, at the single gene level, and of “NK cell mediated cytotoxicity”, and “Immunoregulatory 
interactions between a lymphoid and a non-lymphoid cell” as different modules between affected and unaffected 
 siblings26. Collectively, much data supports the idea that transcriptomic profiling of peripheral blood may provide 
candidate biomarkers for ASD and that immune dysregulation may play a relevant role in ASD pathogenesis. 
However, a consistent set of diagnostic biomarkers remains elusive, likely because of ASD heterogeneity and to 
methodological issues. For example, some studies lack sex matching between ASD discordant  siblings26,29, and 
sex has been shown to significantly influence peripheral transcriptomics in  ASD30.

The present study uses an intra-familial design, matching affected and unaffected sibling pairs by sex and age, 
while controlling for pharmacological treatment in the autistic sibling, an important confounding factor often 
overlooked in prior Literature. We thus conducted RNA sequencing (RNA-Seq) in 31 ASD and 31 unaffected 
siblings (SIB) matched by sex and age, later reduced to 27 ASD-SIB pairs to reliably control for pharmacological 
treatment. Its aim is to find ASD blood biomarkers possibly applicable within “high risk” families, where one 
child has already received an ASD diagnosis.

Results
Identification and control of confounding variables. We first conducted two exploratory analyses, 
to identify potential confounding factors: (a) a Principal Component Analysis (PCA) analysis detected a batch 
effect, due to the processing of the samples in two different runs, in the absence of outliers (Supplementary 
Fig. S1A); and (b) a differential gene expression (DGE) analysis detected a sizable effect exerted by psychoac-
tive drugs, taken by 10/27 (37.0%) ASD cases at the time of blood collection, resulting in 17 genes significantly 
upregulated and 20 genes significantly downregulated (Supplementary Fig. S1B and Supplementary_gene_list_
drug_effects_ASD file). Four ASD-SIB pairs were subsequently excluded, because compliance with prescribed 
drug treatment was uncertain. All further analyses were carried out on 27 ASD-SIB pairs, controlling for batch 
and for presence/absence of pharmacological treatment. Demographic and clinical characteristics of these 27 
ASD-SIB pairs are summarized in Table 1.

Differential gene expression analysis. To test for ASD-SIB expression differences, we performed DGE 
analysis using two distinct models: unpaired and paired. Applying the unpaired model to our sample, while 
correcting for sequencing run and pharmacological treatment, two genes retain a significant p value after FDR 
adjustment, namely EGR1 (p adj = 0.037), and IGKV3D-15 (p adj = 0.037), both up-regulated in ASD patients 
compared to their typically-developing siblings (Fig.  1). Furthermore, several other genes showed a nomi-
nal p value < 0.05, but did not reach statistical significance after FDR correction. In particular, IGKV6D-21 (p 
value = 3.87E−5, p adj = 0.193) and S100B (p value = 5.10E−5, p adj = 0.193) were down-regulated in ASD < SIB; 
instead EGR2 (p value = 4.94E−5, p adj = 0.193), and CD80 (p value = 5.53E−4, p adj = 0.999) were up-regulated 
in ASD > SIB (Fig.  2). Applying the paired model, six genes achieved nominal significance (Supplementary 
Table S1), but none retained statistical significance after FDR correction (Supplementary Figs. S2 and S3). Log2 
Fold Changes for the paired and unpaired model were significantly correlated (Supplementary Fig. S4).
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WGCNA analysis. After excluding low-expression and low-variability genes, WGCNA analysis was con-
ducted on 9491 informative genes. We set the soft threshold power = 8 to construct a scale-free network. Next, 
we built the adjacency matrix and constructed the topological overlap matrix (see Supplementary Methods for 
additional information). Using this strategy, 18 modules encompassing 8095 informative genes were identified, 
based on average hierarchical clustering and dynamic tree clipping (Fig. 3), whereas only 1396 genes were not 
included in any network (grey module in Fig. 3).

Module eigengenes (first principal component of the genes included in the modules) were obtained and used 
for differential expression between ASD and SIB. Data were again analyzed using both the unpaired and paired 
models, which were highly correlated (Supplementary Fig. S4). Applying the unpaired model, one co-expression 
module reached nominal significance before multiple test correction (midnight blue; p = 0.035; log2FC = − 0.05), 
and was downregulated in ASD patients (Fig. 4). In addition to the “midnight blue” module, suggestive trends 
(unadjusted p < 0.10) are displayed by the “turquoise” (primary metabolic process) and “pink” (wound healing) 
modules towards downregulation, and by the “purple” (B cell receptor signaling pathway) and “salmon” (innate 
immune response) modules toward upregulation (Fig. 4 and Supplementary Fig. S5).

Table 1.  Demographic and clinical characteristics of the 27 pairs of autistic and unaffected siblings recruited 
in this study.

Characteristics N (%)

Sex

Male 23 (85.2%)

Female 4 (14.8%)

M:F 5.75:1

Mean age ± SD in years (range)

ASD 11.32 ± 8.38 (2–32)

Unaffected siblings 11.88 ± 8.04 (2–29)

Family type

Simplex 25 (92.6%)

Multiplex 2 (7.4%)

Pharmacological treatment

Present 10 (37.1%)

Absent 17 (62.9%)

Expressive language

Normal development 6 (22.3%)

Language delay 7 (25.9%)

Loss after normal development 7 (25.9%)

Never acquired 7 (25.9%)

Intellectual disability

Present 18 (66.7%)

Absent 9 (33.3%)

EGR1 IGKV3D-15 

Figure 1.  Volcano plot of differentially expressed genes using the unpaired model. Significantly overexpressed 
genes, EGR1 and IGKV3D-15, are highlighted in red.
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We visualized the co-expression network of the midnight blue module using  Cytoscape31, exporting only 
edges with a weight larger than 0.10 (corresponding to the strength of correlation between modules). The hub 
gene of the network is RACK1, a scaffolding protein involved in the recruitment, assembly and/or regulation 
of a variety of molecules, belonging to the PKC, Src and MAPK signaling pathways (Fig. 5). Gene Ontology 
enrichment analysis using all 82 genes included in the midnight blue module detected an enrichment in tran-
scription- and translation-related biological processes, with ASD > SIB in cytosolic ribosome, SRP-dependent 
cotranslational protein targeting to membrane and protein targeting to ER, whereas ASD < SIB in various cata-
bolic processes, such as nuclear-transcribed mRNA catabolic process (Fig. 6). To test the specificity and the 

Figure 2.  Boxplot of the top six differentially-expressed genes detected using the unpaired model. EGR1 and 
IGKV3D-15 retain significant p values after FDR correction (both p adj = 0.037).

Figure 3.  Co-expression modules. Cluster dendrogram showing the coexpression modules detected by 
WGCNA analysis.
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sensitivity of this model, we computed a ROC curve using the values of eigengene (midnight blue), obtaining 
AUC = 0.62 (Supplementary Fig. S6).

Discussion
Autism is a complex disorder, whose phenotypic expression in most cases seemingly depends on the com-
bined action of genetic and environmental factors. The identification of its pathogenetic bases is complicated 
by the presence of great genetic and phenotypic heterogeneity. Transcriptomics represents an intermediate level 
between gene and function, potentially able to provide useful information in the search for ASD biomarkers. In 
this work, we conducted a transcriptome-wide study using RNA-seq technology on an ethnically homogene-
ous sample consisting of 27 Italian autistic individuals paired with their unaffected sibling, matched by sex and 

Figure 4.  Volcano plot of differential expression of module eigengenes. Module eigengenes were obtained for 
each co-expression module and used for differential expression between ASD and SIB. The “midnight blue” 
co-expression module reached nominal significance and was downregulated in ASD patients compared to SIBs. 
The dashed line indicates p < 0.05 significance level.

Figure 5.  The “midnight blue” coexpression network. The figure was generated using using  Cytoscape31, and 
the hub gene RACK1 is highlighted in red.
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age. Moreover, psychopharmacological treatment at the time of blood drawing was carefully considered and 
statistically controlled.

Differential expression analysis identified some significant differences between ASD patients and their unaf-
fected siblings. Indeed, two genes were significantly upregulated in ASD, EGR1 and IGKV3D-15. Interestingly, 
both genes play important immune roles in peripheral mononuclear blood cells (PMBCs). EGR1 (early growth 
response protein 1), also known as Zif-26832,33, encodes for a member of the zinc-finger family of transcription 
factors. Its expression is stimulated by a variety of stimuli (growth factors, hormones, endotoxins, microbial infec-
tions, UV, hypoxia, mechanical stress and/or injury, proinflammatory cytokines); either directly or heterodimeriz-
ing with other factors, like NGFI-A binding protein (NAB), CREB-binding protein (CBP), yes-associated protein 
1 (YAP-1), p53 and NFκB. EGR-1 modulates the expression of many genes ultimately exerting proinflammatory, 
proliferative and migration-promoting actions in multiple systems and organs, including cardiovascular, renal, 
skin, gut and  lung34. This result may have important clinical implications, considering that (a) respiratory and car-
diovascular diseases are among the leading cause of premature, often sudden death especially in low-functioning 
autistic  individuals35. Their pathogenesis consistently involves an inflammatory and proliferative component, 
coordinated by EGR-134; (b) skin inflammatory disorders, like atopic dermatitis, are present in approximately 
10% of children with ASD and are significantly associated with neurodevelopmental  disorders36; and (3) EGR-1 
is also strongly expressed in the gut epithelium, where it plays a complex role in regulating inflammation and 
immune interactions between host and  microbiote37.

IGKV3D-15 (Immunoglobulin kappa variable 3D-15) encodes for membrane-bound or secreted glycoproteins 
produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immuno-
globulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differ-
entiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate 
the effector phase of humoral immunity, which results in the elimination of bound  antigens38,39.

Figure 6.  Gene ontology analysis of the “Midnight blue” module (n = 82 genes). Only processes significant after 
Bonferroni correction are listed, with increasing significance going from blue to red.
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Biological processes like “inflammation”, “immune system regulation”, “acute phase response”, and “lipid 
metabolism” have already been reported to be dysregulated in prior unbiased transcriptional and proteomic 
studies using whole blood and serum, respectively, from ASD patients and typically developing  controls40,41. 
Interestingly, genome-wide RNA expression studies generally find these genes upregulated in post-mortem brains 
and down-regulated in  blood40, whereas proteomic studies instead find predominantly increased serum levels 
of proteins encoded by these gene  networks41. In addition, many ASD-relevant genes are exclusively expressed 
in the brain and often times genes and modules display opposite expression trends in brain and whole  blood40. 
These discrepancies spur several considerations. First, especially for single-gene analyses, our careful ASD-SIB 
matching strategy may have been instrumental, because stratification by gender, age, and ethnic group has been 
shown to largely influence both transcriptomic and proteomic analyses in  ASD41,42. Secondly, our results should 
be primarily interpreted as reflecting pathophysiological processes occurring peripherally at the systemic level, 
because their relationship to the brain pathophysiology of ASD may be limited. Thirdly, despite the latter caveat, 
analyzing EGR-1 expression with the database  dbMDEGA43, on the combined dataset available from Voineagu 
et al.17, Chow et al.18 and Ginsberg et al.44, collectively yields a nominal p value of 0.03 (FDR p = 0.15, n.s.), 
documenting a modest yet consistent increase in EGR-1 expression in the male neocortex (35 ASD vs. 49 CON), 
whereas the female neocortex displays the opposite trend (15 ASD vs. 18 CON). Since all neurodevelopmental 
disorders including ASD are male-predominant and our sample has a M:F ratio of 5.75:1 (Table 1), our findings 
may also be somewhat relevant for the CNS. Interestingly, EGR1 is involved in the regulation of synaptic plas-
ticity, learning, and memory, and is considered a candidate gene for schizophrenia, bipolar disorder and major 
depressive  disorder45. This immediate-early transcription factor has a distinct pattern of brain gene expression 
and mediates the expression of a number of late-response genes involved in different neuronal processes, from 
growth control to plastic changes. EGR-1 expression has been found to be upregulated by neuronal activity and 
synaptic stimulation in many contexts, ranging from visual plasticity in the visual cortex to the “social brain” 
network in social  insects46. It thus appears as a very interesting candidate, able to bridge multiple apparently 
unrelated peripheral and central functions displaying abnormalities in ASD.

A novel finding in the present study is represented by the detection, using WGCNA analysis, of one module, 
“midnight blue”, showing a nominally significant decrease in ASD expression compared to SIB. This module 
appears mainly involved in protein translation (Fig. 6). Its down-regulation, albeit modest, may be functionally 
relevant in relation to the immune dysregulation documented by our single-gene analyses and by other stud-
ies, as well as possible negative influences on neurodevelopment. Interestingly, the hub gene of the network is 
RACK1, encoding the receptor for activated C kinase 1 (Rack1), a propeller-shaped scaffolding protein with seven 
WD40-repeat (WDR) domains each able to bind, assemble and regulate a variety of signaling  molecules47. Its 
first binding partner ever identified was activated protein kinase CβII (PKCβII)48, the protein product of PRKCB, 
a strong candidate autism gene according to the SFARI GENE database (https:// gene. sfari. org/). The PKCβII 
isoform plays an important role in driving inflammatory processes and we previously found it downregulated in 
ASD brains, although ASD-associated alleles do not allow this down-regulation, conceivably increasing ASD risk 
by further promoting neuroimmune  dysregulation49. On the one side, the downregulation of RACK1 and of the 
“midnight blue” module could thus represent a negative-feedback attempt to contrast a systemic inflammatory 
and immune  activation50. At the opposite end, RACK1 expression is directly influenced by various hormones as 
well as by exposure to pollutants capable of acting as "endocrine disruptors (phthalates, bisphenols, polychlo-
rinated biphenyls, etc.)51. Prenatal exposure to some of these chemicals, such as phthalates, has been shown 
to significantly enhance ASD  risk52. Indeed during neural development, RACK1 regulates axon growth and 
 guidance53–55, linking its altered expression or signaling to various neurodevelopmental disorders, such as fetal 
Down  syndrome56, but also late-onset CNS disorders like Alzheimer’s disease display similarly altered RACK1 
 function57. Hence, if confirmed in future studies, decreased “midnight blue” expression could represent either 
a negative-feedback response to persistently ongoing inflammation, oxidative stress and immune dysreactivity, 
or a primary expression dysregulation due to prenatal exposure to endocrine disruptors during critical periods 
in transcriptional control determination.

This study has several strengths and limitations, which must be duly acknowledged. Controlling for ethnic-
ity, age, and sex represents an important strength of our study design, because these variables have indeed been 
shown to influence the results of transcriptomic and proteomic studies using whole blood, leukocytes, or serum 
as starting  biomaterial41,42. To our knowledge, careful pairwise intrafamilial matching to minimize the influence 
of these confounding variables has been applied by some, but not all studies applying a similar sib-pair  design26,29. 
In addition, our ASD cases do not come from a repository, but were clinically followed by one of the Authors 
(AMP), so we could reliably assess for ongoing psychopharmacological treatment at the time of blood drawing. 
Controlling statistically for this parameter is extremely important, since we show here that it exerts a sizable influ-
ence on blood gene expression potentially sufficient to obscure or distort ASD-SIB differences (Supplementary 
Fig. S1B). Through this careful strategy we have lowered the probability of false-positive findings, which plague 
the ASD biomarker field producing a lack of replication and heterogeneity of results. Furthermore, an intrafa-
milial design is also more clinically useful in terms of biomarker search. In fact, unaffected siblings are different 
from unrelated typically developing controls. ASD risk in newborn siblings of children already diagnosed with 
ASD is indeed much higher compared to the general population, because siblings share 50% of their genome 
and potentially harmful environmental exposures. Moreover, first-degree relatives often display subthreshold 
autistic traits, leading to the term “autism spectrum” to designate this continuum of autistic traits in the general 
 population58. Finally, comparing autistic children against their unaffected siblings reduces the probability of 
an environmental bias, due to exposure to agents differentially distributed in residential areas and households.

This increased reliability was obtained at the expense of decreased sensitivity, which represents the main 
limitation of this study, due to its relatively low statistical power given the available sample size. Also the 50% 
genetic overlap in ASD-SIB pairs, as compared to unrelated ASD-control pairs, could contribute to lower the 

https://gene.sfari.org/
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positive predictive value, although this explanation alone may not be entirely satisfactory, as siblings should 
also carry differentially expressed resilience factors that could emerge from a larger sample size. Power analysis 
indicates that assuming the total number of genes tested is 10,000, the top 100 genes are prognostic, and the 
desired minimum fold change is 2, in order to reject the null hypothesis with a probability (power) of 0.7 using 
the exact test (FDR corrected p value = 0.01) a sample size of 56 ASD-SIB pairs is necessary. Indeed, our original 
sample included only 31 ASD-SIB pairs and it was further reduced down to 27, to enhance reliability relative to 
pharmacological treatment. Given these premises, it is not surprising that, after controlling for multiple testing, 
statistical significance was achieved only in the unpaired design, which is more powerful but also more prone 
to bias. Consequently, until we recruit additional pairs to reach this sample size, the present results should be 
viewed with caution in reference to the potential for false positives especially in single gene analyses, to the 
likely presence of several false-negatives and to the relatively small effect size of “midnight blue” decreased 
expression. Finally, our RNA sequencing was not deep enough to allow a reliable ASD-SIB differential alterna-
tive splicing analysis. Unfortunately, this is a major limitation, because abnormal alternative splicing and RNA 
 management27,59, possibly linked to an altered gut  microbiome60, represents a rapidly emerging area of interest 
in ASD research and may explain ASD-SIB discordance, at least in some cases.

Despite these limitations, the present study confirms and extends prior genome-wide transcriptomic findings, 
pointing again toward peripheral immune and transcriptional dysregulation in ASD, while providing some novel 
candidate single-gene and module biomarkers for future targeted studies.

Methods
Human samples description. We initially selected 31 pairs of siblings, each pair including one sibling 
with idiopathic autism (ASD) and one unaffected sibling (SIB). Participants were ethnically homogeneous (all 
Italians) and were enrolled at Campus Bio-Medico University Hospital, Rome, Italy and at the Interdepartmental 
Program “Autism 0-90”, “Gaetano Martino” University Hospital, Messina, Italy. The patient/sibling pairs were 
selected excluding any known comorbidities or genetic syndromes and were matched by sex and age. The use 
of drugs was not an exclusion criterion, but drug treatment was used as a covariate (dichotomous variable: yes/
no) throughout the study, because preliminary analyses showed its significant effects on transcription patterns 
(Supplementary Fig. S1B). Four pairs, out of the original sample of 31 pairs, were excluded, because compliance 
with drug treatment was uncertain. Among the remaining 27 patients with ASD and 27 siblings, which were 
subsequently analyzed, 10 patients were taking a pharmacological treatment at the time of blood drawing. The 
M:F ratio was 5.7:1 (n = 23 male pairs, and n = 4 female pairs). A maximum ASD-SIB within-pair age difference 
of ± 2 years for pre-puberal pairs (< 8 years old) and ± 4 years for post-puberal pairs (≥ 8 years old) was allowed. 
The number of pre-puberal and post-puberal pairs was 13 (48.1%) and 14 (51.9%, respectively. ASD was diag-
nosed in affected siblings according to DSM-5  criteria1, and confirmed by ADOS or ADOS-261 and ADI-R62. 
Unaffected siblings were screened clinically and found not to satisfy DSM-5 criteria for ASD. Autistic behaviors, 
adaptive functioning and intelligence quotient (IQ) were assessed in ASD patients, as previously  described63. 
All parents gave written informed consent for their children. The consent form and experimental protocol were 
approved by the Institutional Review Board of University ‘‘Campus Bio-Medico’’ (prot. 14/98 and 30/14) and the 
ethics committee of the University of Messina (prot. 22/17). All methods were performed in accordance with the 
relevant guidelines and regulations.

RNA extraction and RNA sequencing. Peripheral blood was drawn into Tempus blood RNA tubes 
(ThermoFisher) from all participants, and RNA was extracted using Tempus Spin RNA Isolation Kit following 
the manufacturer’s instructions. RNA quality was assessed by Bioanalyzer 2100 System (Agilent Technologies). 
All samples showed RIN values between 7.8 and 9.4. RNA-seq was conducted at the Center for Translational 
Genomics and Bioinformatics (San Raffaele Scientific Institute, Milan, Italy). Sequencing libraries were prepared 
with 250 ng of total RNA using TruSeq Stranded mRNA (Illumina, Inc.) following the manufacturer’s protocol. 
This approach delineates the coding transcriptome using Oligo-dT beads to capture polyA mRNA tails. The final 
library was sequenced by 100 bp paired-end sequencing on NovaSeq to generate 40 million clusters per sample.

Data analysis. Quality controls on FASTQ files were conducted using FastQC software (http:// www. bioin 
forma tics. babra ham. ac. uk/ proje cts/ fastqc/). Reads were aligned to the Human reference genome (GRCh37) 
using STAR v2.5.3a64. The featureCounts 1.6.265 from the Subread package v1.4.666 was next used to summa-
rize and quantify the mapped reads, by counting the number of reads overlapping Ensemble gene annotations 
(homosapiens.grch37.75.gtf). We sequenced approximately 40 million reads per sample. Reads mapping was 
between 81.4 and 94.0% of total reads aligned, about 60% of these reads originating from CDS-exonic regions. 
Filtering was performed to remove genes with less than 10 total read counts across all samples. Data were vari-
ance stabilized using DESeq2 (vst function), and then Principal Component Analysis (PCA) was performed 
to assess the presence of outliers and to detect any batch effects. Gene expression differential analyses between 
proband and sibling were conducted by means of the R package DESeq2 v1.24.067 using both unpaired and 
paired models. In the unpaired model, we correct for batch and pharmacological treatment. In the paired model, 
we did not correct for batch since each autistic individual was compared to his/her unaffected sibling, sequenced 
in the same batch. The p values were corrected for multiple testing using the False Discovery Rate (FDR) method 
with the Benjamini–Hochberg correction, considering as significant all the genes with adjusted p value (adj 
p) < 0.05.

Weighted correlation network analysis (WGCNA). WGCNA is based on the concept of a scale-free 
network with the presence of a few highly connected nodes (hubs) with many others poorly connected nodes. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Detecting modules of co-expressed genes is one of the objectives of WGCNA, which was conducted using the 
WGCNA R-package25,68. Modules were visualized using Cytoscape, an open source software platform for visual-
izing molecular interaction networks and biological pathways, while integrating these networks with annota-
tions, gene expression profiles and other state data (https:// cytos cape. org/ index. html)31. The gene expression 
matrix was composed of 18,982 genes after data preprocessing. Subsequently, counts data were filtered exclud-
ing genes with less than 10 counts across all samples. Then, they were variance stabilized using DESeq2 (vst 
function) and adjusted for batch and pharmacological treatment using the function “removeBatchEffect” as 
implemented in the limma R-package69. Low-variability genes (lower 50%) were excluded after being ranked by 
Minimum Absolute Deviation (MAD), obtaining a total of 9491 informative genes. We generated an unsigned 
co-expression network using the function blockwiseModules, with the option mergeCutHeight = 0.25. Then, we 
computed the module eigengenes and we investigated their relationship with disease status using a linear model, 
as implemented in the limma package, running a paired and unpaired model as for the differential expression 
analysis. Relevant coexpression networks were exported and visualized using Cytoscape v3.7.270. Modules asso-
ciated with disease status were further investigated using GO enrichment analysis using specific functions pre-
sent in the Bioconductor clusterProfiler v 4.2.2  package71. The receiver operating characteristic (ROC) curve was 
computed for the functionally relevant modules using the WGCNA eigenvalues by means of the roc function, as 
implemented in the R-package pROC72.

Data availability
The datasets generated and/or analysed during the current study are available in the Gene Expression Omnibus 
(GEO) repository (https:// www. ncbi. nlm. nih. gov/ geo/) [Accession Number to Datasets: GSE212645].
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